Abstract

In vibrationally resonant sum-frequency generation (VR-SFG) spectra, the resonant signal contains information about the molecular structure of the interface, whereas the nonresonant signal is commonly treated as a background and has been assumed to be negligible on transparent substrates. The work presented here on model chromatographic stationary phases contradicts this assumption. Model stationary phases, consisting of functionalized fused-silica windows, were investigated with VR-SFG spectroscopy, both with and without experimental suppression of the nonresonant response. When samples are moved from CD(3)OD to D(2)O, the VR-SFG spectrum was found to change over time when the nonresonant signal was present but not when the nonresonant signal was suppressed. No effect was seen when the solvent was changed and pressurized to 900 psi. These results suggest that the response to the new solvent manifests primarily in the nonresonant response, not the resonant response. Any structural changes caused by the new solvent environment appear to be minor. The nonresonant signal is significant and must be properly isolated from the resonant signal to ensure a correct interpretation of the spectral data. Curve-fitting procedures alone are not sufficient to guarantee a proper interpretation of the experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call