Abstract
In the inner ear, there is considerable evidence that extracellular adenosine 5'-triphosphate (ATP) plays an important role in auditory neurotransmission as a neurotransmitter or a neuromodulator, although the potential role of adenosine signalling in the modulation of auditory neurotransmission has also been reported. The activation of ligand-gated ionotropic P2X receptors and G protein-coupled metabotropic P2Y receptors has been reported to induce an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) in inner hair cells (IHCs), outer hair cells (OHCs), spiral ganglion neurons (SGNs), and supporting cells in the cochlea. ATP may participate in auditory neurotransmission by modulating [Ca(2+)](i) in the cochlear cells. Recent studies showed that extracellular ATP induced nitric oxide (NO) production in IHCs, OHCs, and SGNs, which affects the ATP-induced Ca(2+) response via the NO-cGMP-PKG pathway in those cells by a feedback mechanism. A cross-talk between NO and ATP may therefore exist in the auditory signal transduction. In the present article, I review the role of NO on the ATP-induced Ca(2+) signalling in IHCs and OHCs. I also consider the possible role of NO in the ATP-induced Ca(2+) signalling in SGNs and supporting cells.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have