Abstract
The intensive of this study is to examine the melting heat and second-order slip (SoS) effect at the boundary in nanofluid and hybrid nanofluid (HN) ethylene–glycol (EG) based fluid through a curved surface using the Modified Fourier Law (MFL) and dust particles. Considering similarity transformation, the PDEs are converted to ODEs and then solved numerically by using the finite element method (FEM). The effects of solid volume fraction (SVF), melting heat factor, curvature factor, first and second-order slip factor, fluid particle concentration factor, and mass concentration factor on the velocity field, dust phase velocity (DPV), temperature field, dust phase temperature (DPT), and the Ski Friction (SF) are investigated through graphs and tables. The thermophysical properties of nanofluid and HN are depicted in tables. The novelty of the present work is to investigate the dusty- and dusty-hybrid nanoliquids over the curved surface with a melting heat effect and MFL which has not yet been studied. In the limiting case, the present work is compared with the published work and a good correlation is found. The confirmation of the mathematical model error estimations has been computed.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have