Abstract

The production of hydrogenated polymorphous silicon–germanium (pm-SiGe:H) has been reported as a promising material in microelectronics due to its relevant properties, such as high electrical conductivity, production cost, and manufacturing versatility. Nonetheless, the material performance at room temperature remains to be evaluated. In this work, we report an evaluation of a set of deposition conditions of pm-SiGe:H using low-frequency plasma-enhanced chemical vapor deposition (LF-PECVD). Also, the crystallinity of the samples was investigated by Raman spectroscopy and transmission electron microscopy. Furthermore, the hydrogen-dilution ratio, gas-phase germane content, and deposition pressure play an essential role in the improvement of the electrical properties and material’s structural composition due to the nanoparticle growth inside the thin film, which is a critical factor that enhances the electrical conductivity of thin films by about seven orders of magnitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call