Abstract
The effect of N-doping of titania (TiO2) nanoparticles (NPs) on their reduction through neutral O vacancy (Ovac) formation is investigated using all electron density functional theory-based calculations, including hybrid density functionals, and taking the bipyramidal anatase (TiO2)84 NP as a realistic model. The location of the N dopant is systematically analyzed, including O substitution in the (TiO2)84 structure and N occupying interstitial regions. Our computational study concludes that interstitial N doping is more favorable than N substituting O atoms and confirms that the presence of N reduces the energy gap. In the N-doped NP, Ovac formation is more favored than in undoped NP but less than in the N-doped bulk, which has important consequences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.