Abstract
In polyglutamine (PolyQ) diseases, mutant proteins cause not only neurological problems but also peripheral tissue abnormalities. Among all systemic damages, skeletal muscle dystrophy is the severest. Previously by studying knock-in (KI) mouse models of spinal cerebellar ataxia 17 (SCA17), it was found that mutant TATA box binding protein (TBP) decreases its interaction with myogenic differentiation antigen, thus reducing the expression of skeletal muscle structural proteins and resulting in muscle degeneration. In this paper, the role of mutant TBP in myogenesis was investigated. Single myofibers were isolated from tibialis anterior muscles of wild type (WT) and SCA17KI mice. The 1TBP18 staining confirmed the expression of mutant TBP in muscle satellite cells in SCA17KI mice. In the BaCl2-induced TA muscle injury, H&E cross-section staining showed no significant change in myofibril size before and after BaCl2 treatment, and there was no significant difference in centralized nuclei between WT and SCA17KI mice, suggesting that mutant TBP had no significant effect on muscle regeneration. In the cultured primary myoblasts from WT and SCA17KI mice in vitro, representative BrdU immunostaining showed no significant difference in proliferation of muscle satellite cells. The primary myoblasts were then induced to differentiate and immunostained for eMyHC, and the staining showed there was no significant difference in differentiation of primary myoblasts between WT and SCA1KI mice. Our findings confirmed that mutant TBP had no significant effect on myogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.