Abstract

Fusion reactions 40Ar + 116Sn, 40Ar + 122Sn and 40Ca + 124Sn have been examined by employing coupled channel (CC) approach using code-CCFULL. Here we aim to investigate the influence of multi-neutron transfer channels in addition to coupling of collective excitations on sub-barrier fusion enhancement. Incorporation of inelastic excitations alone reproduced the experimental results for 40Ar + 116Sn system while for 40Ar + 122Sn contribution of 2n transfer channel is required to explain the experimental data. However, CC calculations with 2n transfer could not explain the enhancement at sub-barrier energies for 40Ca + 124Sn system. Therefore, the empirical coupled channel (ECC) calculations have been carried out to include the effect of multi-neutron transfer channels and it is found that the incorporation of sequential 4n transfer channel reproduced the experimental results in entire energy region. Nevertheless, it is observed that multi-neutron transfer coupling significantly contributed in raising the sub-barrier fusion cross sections particularly for the reactions where colliding partners are spherical. Importantly, it is also found that transfer of even number of neutrons play dominating role in sub-barrier fusion enhancement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call