Abstract

In the present work, kinetics of the hydrate-based gas separation (HBGS) process has been studied employing an unstirred reactor configuration. Gas uptake measurements were carried out for studying hydrate formation kinetics and final water to hydrate conversion using fuel gas mixtures (mixture 1, 40.4% CO2 + 59.6% H2; mixture 2, 40.9% CO2 + 58.05% H2 + 1.05% H2S). Silica sand and stainless-steel-structured packing (SSP) were used as contact media in the presence of an anionic surfactant sodium dodecyl sulfate (SDS) as a kinetic promoter. Experiments were conducted with three different concentrations of SDS in water to enhance hydrate formation kinetics. On the basis of induction time and rate of hydrate growth, 1 wt % SDS was determined to be the best concentration for carbon dioxide capture at 7.0 MPa and 273.65 K from the CO2 + H2 gas mixture. In comparison to silica sand packing, use of SSP was found to improve the final water to hydrate conversion (71.0 ± 4.1%). The addition of H2S impurity in the fu...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.