Abstract

The present study was designed to address the reactivity and accessibility of the particular class of sulfhydryl groups involved in the regulatory process of renin secretion. Both mercurial (such as P-chloromercuriphenyl sulfonate [PCMPS] and non-mercurial sulfhydryl reagents (for example, 6,6-dithiodinicotinic acid [DTDN]), which very slowly penetrate the cell membrane of intact cells, stimulated renin secretion. The membrane permeant sulfhydryl reagent N-ethylmaleimide had no effect on renin secretion but its membrane impermeant derivative, stilbene maleimide, strongly stimulated secretion. Furthermore, disulfide reducing agents such as dithiothreitol (DTT) had no effect on renin secretion at low concentrations, but strongly inhibited it at high concentrations. Several reagents which are known to primarily deplete cellular reduced glutathione were without effect on renin secretion. The stimulation of renin secretion by PCMPS was rapid in onset, and prevented and reversed by DTT and L-cysteine. Furthermore, the maximal stimulatory effect of PCMPS was not additive to that by diuretics with sulfhydryl reactivity (such as, ethacrynic acid and mersalyl). The stimulatory effect of PCMPS was not affected by diuretics which lack sulfhydryl reactivity (such as, bumetanide and furosemide). These results suggest that sulfhydryl reagents of both with and without diuretic activity stimulate renin secretion by reacting with specific class of sulfhydryl groups which are readily accessible from the extracellular compartment. In addition, these results provide further support the possibility that a sulfhydryl-disulfide interchange in the membrane may play a regulatory role in the renin secretory process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.