Abstract

Algal blooms can aggravate arsenic (As) release from sediments and thus pose a pollution risk in the marine environment. However, the driving mechanism of algal blooms on sedimentary As cycling remains unclear. This study undertakes the first comprehensive examination of As release mechanisms under algal bloom conditions based on the evidence provided by temporal and depth profile changes of As species in the overlying water column, porewater and sediment, as well as As-related functional genes over the course of a 30-day incubation experiment using algal addition. The higher rate of increase of dissolved total As (dTAs) concentrations in a high biomass algal group (HAG) than an experimental control group (CG) suggested that algal degradation promoted the release of sedimentary As. The solid phase in all experimental groups remained rich in As(V), while in porewater As(III) and As(V) were the dominant As species during the initial rapid and subsequent slow degradation phases of organic matter, respectively, indicating that microbial reduction of As(V) and Fe(III) controlled the release of As during these two periods. A pronounced increase in arrA gene copies, and not a corresponding increase in the Geobacter copies, in HAG relative to CG supported the notion that algal blooms promoted microbial As(V) reduction. Additionally, the lower concentration of dissolved As(III) and cumulative dTAs flux in the sterilized-HAG treatment than in the sterilized-CG one further suggested that geochemically-mediated processes were not the main pathways of As release. Finally, it is estimated that summer algal blooms in the Changjiang Estuary can cause the release of 1440 kg of sedimentary As into the overlying water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call