Abstract
BackgroundThe existence of referred pain and ectopic paresthesia caused by tooth pulp inflammation may make definitive diagnosis difficult and cause misdiagnosis or mistreatment; thus, elucidation of that molecular mechanism is urgent. In the present study, we investigated the mechanisms underlying ectopic pain, especially tongue hyperalgesia, after tooth pulp inflammation.MethodsA rat model with mandibular first molar tooth pulp exposure was employed. Tooth pulp exposure-induced heat and mechanical-evoked tongue hypersensitivity was measured, and immunohistochemical staining for Iba1, a marker of active macrophages, IL-1β, IL-1 type I receptor (IL-1RΙ), and toll-like receptor 4 in the trigeminal ganglion was performed. In addition, we investigated the effects of injections of liposomal clodronate Clophosome-A (LCCA), a selective macrophage depletion agent, lipopolysaccharide from Rhodobacter sphaeroides (LPS-RS, a toll-like receptor 4 antagonist), IL-1β, or heat shock protein 70 (Hsp70, a selective agonist of toll-like receptor 4), to examine changes in tongue hypersensitivity and in the regulation of IL-1RΙ, toll-like receptor 4, and transient receptor potential vanilloid 1 (TRPV1) biosynthesis.ResultsAt day 1 after tooth pulp exposure, obvious tooth pulp inflammation was observed. Tooth pulp exposure-induced heat and mechanical tongue hypersensitivity was observed from days 1 to 3 after tooth pulp exposure. The production of IL-1β in activated macrophages and toll-like receptor 4 and IL-1RΙ expression were significantly increased in trigeminal ganglion neurons innervating the tongue following tooth pulp exposure. Intra-trigeminal ganglion injection of LCCA significantly suppressed tongue hypersensitivity; however, toll-like receptor 4 and IL-1RΙ expression in trigeminal ganglion neurons innervating the tongue was not significantly altered. Intra-trigeminal ganglion injection of LPS-RS significantly suppressed tongue hypersensitivity and reduced IL-1RΙ expression in the trigeminal ganglion neurons innervating the tongue following tooth pulp exposure. Intra-trigeminal ganglion injection of recombinant Hsp70 significantly promoted tongue hypersensitivity and increased IL-1RI expression in trigeminal ganglion neurons innervating the tongue in naive rats. Furthermore, intra-trigeminal ganglion injection of recombinant IL-1β led to tongue hypersensitivity and enhanced TRPV1 expression in trigeminal ganglion neurons innervating the tongue in naive rats.ConclusionsThe present findings suggest that the neuron-macrophage interaction mediated by toll-like receptor 4 and IL-1RI activation in trigeminal ganglion neurons affects the pathogenesis of abnormal tongue pain following tooth pulp inflammation via IL-1RI and TRPV1 signaling in the trigeminal ganglion. Further research may contribute to the establishment of new therapeutic and diagnostic methods.
Highlights
The existence of referred pain and ectopic paresthesia caused by tooth pulp inflammation may make definitive diagnosis difficult and cause misdiagnosis or mistreatment; elucidation of that molecular mechanism is urgent
The present findings suggest that the neuron-macrophage interaction mediated by toll-like receptor 4 and IL-1RI activation in trigeminal ganglion neurons affects the pathogenesis of abnormal tongue pain following tooth pulp inflammation via IL-1RI and transient receptor potential vanilloid 1 (TRPV1) signaling in the trigeminal ganglion
No changes in head withdrawal threshold were observed in sham rats (Fig. 1c, d). These results indicate that tooth pulp inflammation and tongue hyperalgesia are developed following tooth pulp exposure under the present experimental condition
Summary
The existence of referred pain and ectopic paresthesia caused by tooth pulp inflammation may make definitive diagnosis difficult and cause misdiagnosis or mistreatment; elucidation of that molecular mechanism is urgent. It is well known that orofacial paresthesia or ectopic referred pain sometimes occurs as secondary hyperalgesia associated with tooth pulp inflammation [1,2,3,4]. The detailed mechanism of how the peripheral nervous system is associated with the development of orofacial-referred pain following tooth pulp inflammation remains unclear. The existence of referred pain and ectopic paresthesia caused by tooth pulp inflammation may make definitive diagnosis difficult, leading to misdiagnosis or mistreatment. Elucidation of this molecular mechanism is urgent
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have