Abstract

Ischemic stroke is a prominent contributor to global morbidity and mortality rates. The intricate and diverse mechanisms underlying ischemia-reperfusion injury remain poorly comprehended. RNA methylation, an emerging epigenetic modification, plays a crucial role in regulating numerous biological processes, including immunity, DNA damage response, tumorigenesis, metastasis, stem cell renewal, adipocyte differentiation, circadian rhythms, cellular development and differentiation, and cell division. Among the various RNA modifications, N6-methyladenosine (m6A) modification stands as the most prevalent in mammalian mRNA. Recent studies have demonstrated the crucial involvement of m6A modification in the pathophysiological progression of ischemic stroke. This review aims to elucidate the advancements in ischemic stroke-specific investigations pertaining to m6A modification, consolidate the underlying mechanisms implicated in the participation of m6A modification during the onset of ischemic stroke, and deliberate on the potential of m6A modification as a viable therapeutic target for ischemic stroke.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.