Abstract

Rheumatoid arthritis (RA) is a multifaceted autoimmune disease characterized by systemic inflammation, affecting both articular and extra-articular structures. This condition results in inflammation of joints and synovial membranes, accompanied by the development of systemic comorbidities. Despite extensive research, the precise pathogenic mechanisms responsible for RA have yet to be completely understood. RNA methylation, a burgeoning epigenetic alteration, assumes a pivotal function in the regulation of a myriad of biological phenomena, encompassing immunity, DNA damage response, tumorigenesis, metastasis, stem cell renewal, adipocyte differentiation, circadian rhythms, cellular development and differentiation, and cell division. The N6-methyladenosine (m6A) modification is the most prevalent among the various RNA modifications found in mammalian mRNA. Recent studies have provided evidence of the significant role played by m6A modification in the pathophysiological progression of RA. This review aims to provide a comprehensive analysis of the progress made in research focused on m6A modification in the context of RA, consolidate the underlying mechanisms involved in m6A modification during the initiation of RA and discuss the potential of targeting m6A modification as a viable therapeutic approach for RA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.