Abstract

Airway smooth muscle constriction induced by cholinergic agonists such as methacholine (MCh), which is typically increased in asthmatic patients, is regulated mainly by muscle muscarinic M3 receptors and negatively by vagal muscarinic M2 receptors. Here we evaluated basal (intrinsic) and allergen-induced (extrinsic) airway responses to MCh. We used two mouse lines selected to respond maximally (AIRmax) or minimally (AIRmin) to innate inflammatory stimuli. We found that in basal condition AIRmin mice responded more vigorously to MCh than AIRmax. Treatment with a specific M2 antagonist increased airway response of AIRmax but not of AIRmin mice. The expression of M2 receptors in the lung was significantly lower in AIRmin compared to AIRmax animals. AIRmax mice developed a more intense allergic inflammation than AIRmin, and both allergic mouse lines increased airway responses to MCh. However, gallamine treatment of allergic groups did not affect the responses to MCh. Our results confirm that low or dysfunctional M2 receptor activity is associated with increased airway responsiveness to MCh and that this trait was inherited during the selective breeding of AIRmin mice and was acquired by AIRmax mice during allergic lung inflammation.

Highlights

  • The cholinergic system plays a role in the regulation of many pathophysiological mechanisms

  • Our work shows that AIRmin and AIRmax mouse lines represent a model to study lung muscarinic receptor functions and its relation with the development of an allergic lung disease

  • We found that AIRmin and AIRmax animals develop different patterns of airway reactivity under basal or inflammatory conditions

Read more

Summary

Introduction

The cholinergic system plays a role in the regulation of many pathophysiological mechanisms. The vagal parasympathetic nervous system via muscarinic receptors represents the dominant autonomic control of airway smooth muscle tone. Acetylcholine released at neuromuscular junctions binds to M3 muscarinic receptors in the smooth muscle and promotes airway contraction through a number of welldefined intracellular signaling mechanisms [1, 2]. M2 muscarinic receptor that inhibits acetylcholine release [3, 4]. Airway hyperresponsiveness (AHR) is an exaggerated smooth muscle constriction observed in certain individuals among a population, which can occur in response to a variety of stimuli such as histamine, exercise, cold air, and methacholine (MCh). AHR is a cardinal feature of asthma [5]. Susceptibility to develop asthma is associated with IL-5, a key cytokine for eosinophil differentiation, activation, and survival [8, 9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call