Abstract
The effect of ionization fraction on the epitaxial growth of Cu film on Cu (111) substrate at room temperature is explored. Three deposition methods, thermal evaporation, dc magnetron sputtering (dcMS), and high power impulse magnetron sputtering (HiPIMS) are compared. Three deposition conditions, i.e., fully neutral, 50% ionized, and 100% ionized flux were considered thermal evaporation, dcMS, and HiPIMS, respectively, for ∼20000 adatoms. It is shown that higher ionization fraction of the deposition flux leads to smoother surfaces by two major mechanisms, i.e., decreasing clustering in the vapor phase and bicollision of high energy ions at the film surface. The bicollision event consists of local amorphization which fills the gaps between islands followed by crystallization due to secondary collisions. The bicollision events are found to be very important to prevent island growth to become dominant and increase the surface roughness. Regardless of the deposition method, epitaxial Cu thin films suffer from stacking fault areas (twin boundaries) in agreement with recent experimental results. Thermal evaporation and dcMS deposition present negligible interface mixing while HiPIMS deposition presents considerable interface mixing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.