Abstract

It is generally known that a layer of amorphous silicon oxide (SiO2) naturally exists on the surface of silicon, resulting in the growth of gallium oxide (Ga2O3) that is no longer affected by substrate crystallinity during sputtering. This work highlights the formation energy between the native amorphous nano-oxide film formed on the Si substrate and monoclinic β-Ga2O3 dominating the preferred orientation prepared for deep ultraviolet photodetectors. The latter were deposited on p-type silicon (p-Si) with (111) orientation using radio frequency sputtering at 600 °C and post rapid thermal annealing (RTA). The X-ray diffraction (XRD) results indicate both as-deposited and postannealing films with the (400) preferred orientation for a layer thickness of 100 nm. However, slight random orientation with the amorphous structure is mixed in the preferred one for the as-deposited film with a thickness of 200 nm and reduced after being annealed at 800 °C, which is observed by XRD and transmission electron microscopy. Meanwhile, thermal-induced massive twin boundaries (TBs) and stacking faults (SFs) were generated when annealed at 1000 °C, owing to the relaxation of lattice strain by the coherent interface. The interfacial bonding energy per unit area (Ei) between β-Ga2O3 films with various facets ((001), (010), (100), and (2̅01)) and amorphous SiO2 was calculated using density functional theory. The Ei of β-Ga2O3 (100)/SiO2 reveals the highest value (0.289 eV/Å2), which is consistent with the (100) preferred orientation of deposited films. The (100) preferred orientation is the driving force for TBs and SFs. The discrimination of responsivities and the photo/dark current contrast ratio (Iph/Idark) are inversely proportional to the amorphous structure, grain boundaries, TBs, and SFs. Therefore, optimum metal–semiconductor–metal photodetector performance is achieved for RTA-treated samples at 800 °C with an Iph/Idark of 3.91 × 102 and a responsivity of 0.702 A/W (λpeak = 230 nm) at 5 V bias for a 200 nm thin film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.