Abstract

In the current work, contact‐mechanics at different length scale is utilized to correlate damage accumulation in TaC‐based composites. Upon synergistic reinforcement with silicon carbide (SiC) and carbon nanotubes (CNTs), TaC has shown to reduce the wear rate from 10.5 × 10−7 to 4.1 × 10−7 mm3 N−1 m−1 upon fretting (micro‐wear) and from 8.0 to 2.7 mm3 N−1 m−1 upon micro‐scratching (meso‐wear). Enhancement in the fracture toughness from 2.9 to 10.7 MPam1/2 with reinforcement is attributed to the processing induced defects (such as dislocation, stacking fault etc.) in SiC and strong interfacial bonding of CNTs with TaC, as revealed by transmission electron microscopy (TEM). Delineation of the synergistic contribution of SiC and CNT reinforcement in TaC establishes the wear mechanism to be abrasion (via fretting test), brittle tensile cracking, and fracture (via micro‐scratch test).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.