Abstract

We study numerically the two-dimensional Ising model with nonconserved dynamics quenched from an initial equilibrium state at the temperature T_{i}≥T_{c} to a final temperature T_{f} below the critical one. By considering processes initiating both from a disordered state at infinite temperature T_{i}=∞ and from the critical configurations at T_{i}=T_{c} and spanning the range of final temperatures T_{f}∈[0,T_{c}[ we elucidate the role played by T_{i} and T_{f} on the aging properties and, in particular, on the behavior of the autocorrelation C and of the integrated response function χ. Our results show that for any choice of T_{f}, while the autocorrelation function exponent λ_{C} takes a markedly different value for T_{i}=∞ [λ_{C}(T_{i}=∞)≃5/4] or T_{i}=T_{c} [λ_{C}(T_{i}=T_{c})≃1/8] the response function exponents are unchanged. Supported by the outcome of the analytical solution of the solvable spherical model we interpret this fact as due to the different contributions provided to autocorrelation and response by the large-scale properties of the system. As changing T_{f} is considered, although this is expected to play no role in the large-scale and long-time properties of the system, we show important effects on the quantitative behavior of χ. In particular, data for quenches to T_{f}=0 are consistent with a value of the response function exponent λ_{χ}=1/2λ_{C}(T_{i}=∞)=5/8 different from the one [λ_{χ}∈(0.5-0.56)] found in a wealth of previous numerical determinations in quenches to finite final temperatures. This is interpreted as due to important preasymptotic corrections associated to T_{f}>0.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.