Abstract

In an effort to grow metal oxide films (e.g., MoO3) at low temperatures, a novel molybdenum precursor, Si(CH3)3CpMo(CO)2(η3-2-methylallyl) or MOTSMA, is used with ozone as the coreactant. As is often observed in atomic layer deposition (ALD) processes, the deposition of molybdenum trioxide displays an incubation period (∼15 cycles at 250 °C). In situ FTIR spectroscopy reveals that ligand exchange reactions can be activated at 300 °C, leading to a shorter incubation periods (e.g., ∼ 9 cycles). Specifically, the reaction of MOTSMA with OH-terminated silicon oxide surfaces appears to be the rate limiting step, requiring a higher temperature activation (350 °C) than the subsequent ALD process itself, for which 250 °C is adequate. Therefore, in order to overcome the nucleation delay, the MOTSMA precursor is initially grafted at 350 °C, with spectroscopic evidence of surface reaction, and the substrate temperature then lowered to 250 or 300 °C for the rest of the ALD process. After this initial activation, a st...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.