Abstract

We report a theoretical and experimental study on the role of indistinguishability in the estimation of an interferometric phase. In particular, we show that the quantum Fisher information, which limits the maximum precision achievable in the parameter estimation, increases linearly with respect to the degree of indistinguishability between the input photons in a two-port interferometer, in the ideal case of a pure probe state. We experimentally address the role played by the indistinguishability for the case of two photons entering a polarization-based interferometer, where the degree of indistinguishability is characterized by the overlap between two spatial modes. The experimental results support the fact that, even in the presence of white noise, a quantum enhancement in the interferometric phase estimation can be obtained from a minimum degree of indistinguishability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.