Abstract

Quantum metrology is a subject of studying quantum measurement and quantum statistical deduction, and the precision of parameter estimation can be enhanced by quantum properties. In general, the process of parameter estimation includes four steps:preparation of probe state, parameterization process, measurement, and data processing. Of these four steps, the preparation of probe state is the most crucial. However, in practical applications, in the process of preparing quantum probe state, the probe system will couple to its environment, which will inevitably cause the quantum properties of the probe system to deteriorate, and thus reducing the precision of quantum parameter estimation. The dynamics of quantum Fisher information (QFI) for W state and Greenberger-Horne-Zeilinger (GHZ) state have been studied in decoherence channels. Because W state and GHZ state have different entanglement properties, the studies of the dynamics of QFI for the superposition of W state and GHZ state are of practical significance in quantum metrology field. In this paper, the dynamics of QFIs for the superposition of W state and GHZ state in three typical decoherence channels (depolarization channel, amplitude damping channel and phase damping channel) are studied. In the four steps of quantum parameter estimation, our major attention is paid to the first step (i.e., the preparation of probe state). For comparison, the QFIs of different probe states are studied, with the other three steps fixed, i.e., all the probe states will undergo the same parameterization, measurement and estimation process. The parameterization process involved here is a quantum spin operation (specified by the spin rotation direction), which is chosen to maximize the QFI of the probe state. The initial probe states under consideration are the superpositions of W state and GHZ state of three-particle and five-particle systems, and the QFI dynamics of those probe states are studied in the three different typical decoherence channels. By using the operator-sum (Kraus) representation of those three typical decoherence channels, the QFI dynamics of the probe state can be analytically derived in three different decoherence channels. The results show that in the depolarization channel, the maximum QFI of the probe state decreases with the decoherence evolving to zero in the end; in the amplitude damping channel, the QFI of the probe state decreases to the minimum with the decoherence evolution and then increases to the shot noise limit; in the phase damping channel, the QFI of the probe state decreases with the evolution of decoherence, but the final stable value is not zero. Further analyses show that W state component of the superposition plays a role in resisting phase damping and the GHZ state component plays a role in resisting amplitude damping. These results can help us to choose the optimal probe state for maximizing the estimation precision in practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call