Abstract

Mammals develop in a physiologically hypoxic state, and the oxygen tension of different tissues in the embryo is precisely controlled. Deviation from normal oxygenation, such as what occurs in placental insufficiency, can disrupt fetal development. Several studies demonstrate that intrauterine hypoxia has a negative effect on kidney development. As nascent nephrons are forming from nephron progenitors in the nephrogenic zone, they are exposed to varying oxygen tension by virtue of the development of the renal vasculature. Thus, nephrogenesis may be linked to oxygen tension. However, the mechanism(s) by which this occurs remains unclear. This review focuses on what is known about molecular mechanisms active in physiological and pathological hypoxia and their effects on kidney development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.