Abstract
The efficient and harmless treatment of cyanide tailings is necessary for gold extraction processes. The present study reports the effects of ClO- generation in a slurry electrolysis system containing NaCl on the removal rate of cyanide and heavy metal ions in cyanide tailings. The chemical dissolution of metallic minerals and the reaction mechanisms were investigated by Fourier-transform infrared (FT-IR) and X-ray diffraction (XRD) analyses. The obtained results evidenced the key role of ClO- in the removal of cyanide and heavy metal ions through the slurry electrolysis system with NaCl addition. Furthermore, ClO- formation increased with the NaCl concentration, resulting in a higher removal rate of cyanide and heavy metal ions and enhanced metallic mineral dissolution. The cyanide tailings showed the best harmless effect with a NaCl concentration of 15g/L. With this condition, the removal rates of CNT, CN-, Cu, Zn and Fe were 96.15%, 98.34%, 98.62%, 99.32% and 79.31%, respectively; furthermore, Cu and Fe precipitated at the cathode. The relative hematite content decreased by 3.12%. Under the effect of an electric field, the cyanide and metal cyanide complexes in the cyanide tailings oxidised and decomposed to release metal cations by the strongly oxidising ClO- generated at the anode. The metal cations and hematite were reduced at the cathode, while the metal oxide mineral hematite in the electrolyte underwent chemical dissolution. In the toxic degradation of cyanide tailings, the comprehensive recovery of metals and destruction of metallic minerals in tailings will provide favourable conditions for subsequent comprehensive utilisation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have