Abstract

6:2 Fluorotelomer sulfonic acid (6:2 FTS) is used as alternative to perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) for different purposes such as chrome mist suppressant (CMS) and active ingredient in fire-fighting foams. In this study, degradability of 6:2 FTS under ultraviolet/persulfate (UV/PS) and ultraviolet/sulfite (UV/SF), which are typical technologies for advanced oxidation and reduction, were investigated respectively. Due to the hydrogenated moiety, 6:2 FTS was decomposed completely by UV/PS within 10 min, forming a mixture of short-chain perfluoroalkyl carboxylic acids with variable chain length (2-7 carbon atoms). Such oxidation products account for > 50% organofluorine of 6:2 FTS unmineralized portion. 6:2 FTS degradability under reductive UV/SF system was dramatically slowed down by the hydrogenated moiety, which lowered electron affinity and, consequently, reactivity with aqueous electron (eaq‾) produced by UV/SF. Fluorine mass balance showed that degradation intermediates were almost negligible: most of decomposed 6:2 FTS fluorine was converted to fluoride. A real 6:2 FTS-based CMS solution prepared from a commercial product was also tested. Both types of treatment were effective and in good agreement with the trends observed for tests with sole 6:2 FTS. Moreover, experimental results highlighted a remarkable amount of identifiable (like 4:2 FTS, 8:2 FTS and other per-/polyfluoroalkyl substances) and unidentifiable components in the CMS mixture. Indeed, fluoride concentration under UV/SF (73.8 mg/L) and UV/PS (44.9 mg/L) treatment were both higher than the estimated total concentration (<23 mg/L, according to 6:2 FTS concentration). Results strongly suggest that an oxidation pretreatment followed by reduction might be a better way to degrade and defluorinate 6:2 FTS and other precursors with non-fluorinated moieties, rather than employing single reduction or oxidation technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.