Abstract

In this work, the electronic structure and optical properties are investigated within the framework of the density functional theory (DFT) for different Na-H co-doping scenarios to find out the suitability of H co-doping technique for achieving p-type conductivity in ZnO. Very low formation energies were found for the H co-doped systems compared to others which suggests that they can suppress other n-type impurities and increase the effect of p-type NaZn defects in the lattice. From the electronic structure calculations, we have found that NaZn doped structures with 50% H co-doping produces the best p-type behavior indicating importance of controlling annealing time. Moreover, from the optical calculations, it has been found that NaZn creates impurity states 174 meV above the valence band and electron concentration in these states can be controlled by H co-doping concentration. H co-doping has not produced any substantial lattice strain as compared to other dopants and structures with Na-H co-doping is transparent in the visible light range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.