Abstract

This paper shows how an application of zeta function regularisation to a physical model of quantum measurement yields a solution to the problem of wavefunction collapse. Realistic measurement dynamics based on a particle becoming non-isolated are introduced and, based on this, an outcome function is derived using the method of maximum entropy. It is shown how regularisation of an information theoretic quantity related to this outcome function leads to apparent collapse of the wavefunction. The physical principles and key assumptions that underlie this theory are discussed. Some possible experimental approaches are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.