Abstract
The metabolism of a novel dual antagonist for alpha4beta1/alpha4beta7 integrin, TR-14035, and the role of polymorphic enzyme responsible for this metabolism were investigated. Human liver microsomes catalyzed the NADPH-dependent metabolism of TR-14035 to a primary metabolite, O-desmethyl TR-14035. This formation was completely blocked by both sulfaphenazole, a selective CYP2C9 inhibitor, and CYP2C9 antibody, whereas potent inhibitors selective for other CYPs exhibited little effects. Of 12 recombinant CYPs examined, O-desmethyl metabolite was principally formed by CYP2C9. CYP1A1, an extrahepatic enzyme, also had this activity (about one-fourth of CYP2C9). Utilizing recombinant CYP2C9*1, K(m) and V(max)/K(m) values of 23.3 microM and 0.284 microL/min/pmol CYP2C9, respectively, were obtained for the O-desmethyl formation, which were quite similar to those in CYP2C9*2 enzyme. In contrast, V(max)/K(m) value in recombinant CYP2C9*3 was approximately one-sixth of CYP2C9*1 and *2. In agreement, kinetics studies using human liver microsomes with CYP2C9*1/*1, *2/*2 and *3/*3 genotypes revealed that the V(max)/K(m) value in *2/*2 microsomes was comparable to that in wild type microsomes, in contrast, that in *3/*3 microsomes was reduced. These results demonstrate CYP2C9 is a primary enzyme mediating the O-desmethylation of TR-14035 in human liver. In homozygotes of CYP2C9*3, the metabolic clearance of TR-14035 should be decreased compared with homozygotes of CYP2C9*1 or 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.