Abstract

Human liver cytochrome P-450 was isolated from autopsy samples using cholate extraction and chromatography on n-octylamino-Sepharose 4B, hydroxylapatite, and DEAE-cellulose gels. Purified preparations contained as much as 14 nmol cytochrome P-450 mg −1 protein, were free of other hemoproteins, and were active in the mixed-function oxidation of d-benzphetamine and 7-ethoxycoumarin when coupled with either rat or human liver NADPH-cytochrome P-450 reductase. Some of the preparations were apparently homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; apparent subunit M rs estimated for several preparations were 53,000 or 55,500. The amino acid composition of one preparation was determined and found to resemble those of rat liver cytochromes P-450, although some variations were noted. Rabbit antibodies raised to phenobarbital-treated rat liver cytochrome P-450 were more effective in inhibiting d-benzphetamine N-demethylase activity in human liver microsomes than were antibodies raised to 3-methylcholanthrene-treated rat liver cytochrome P-450. These antibodies also inhibited benzo( a)pyrene hydroxylation in human liver microsomes, although the inhibition patterns did not follow a general pattern as in the case of benzphetamine demethylase activity. Microsomes prepared from three different human liver samples were more effective in eliciting complement fixation with antibodies raised to phenobarbitalthan to 3-methylcholanthrene-treated rat liver cytochrome P-450. Complement fixation in such systems appears to result from similarity of certain rat and human liver cytochrome P-450 antigenic determinants, as fixation could be inhibited by removal of cytochrome P-450-directed antibodies from the total immunoglobulin population and purified human cytochrome P-450 was more effective (on a protein basis) than liver microsomes in producing fixation. Human liver microsomes prepared from five different individuals all produced ≥ 90% complement fixation, but variations were observed in the fixation curves plotted either versus microsomal protein or versus spectrally detectable microsomal cytochrome P-450. These results indicate that human liver microsomal cytochromes P-450 can be isolated using modifications of techniques developed for laboratory animals and that human and rat liver cytochromes P-450 share certain features of structural, functional, and immunological similarity. The available data suggest the existence of multiple forms of human liver microsomal cytochrome P-450, but possible artifacts associated with the use of autopsy samples suggest caution in advancing such a conclusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.