Abstract
Effects of varied bioactive fillers on the biological behavior of porous polymer/inorganic composite scaffolds are lack of comprehensive comparison and remain elusive. Moreover, composite scaffolds with high porosity suffer from inferior mechanical performance. Herein, high-pressure molding and salt leaching were employed to prepare poly(ε-caprolactone) (PCL) composite porous scaffolds loaded with hydroxyapatite (HA) and bioactive glass (BG), respectively. Structural analysis indicated all the porous scaffolds presented interconnected open-pore structure with the porosity of ~87% and pore size of ~180 μm, hinging on the amounts and size of porogen. Compared to PCL/HA scaffolds, PCL/BG scaffolds showed ~2.3-fold augment in the water absorption. Attributing to the compact framework, the PCL/HA and PCL/BG porous scaffolds exhibited outstanding compressive modulus, which was notably higher than other PCL composite porous scaffolds reported in literatures. Cells culture results demonstrated that PCL/BG scaffolds displayed higher expression of osteogenic differentiation than PCL and PCL/HA scaffolds. Furthermore, in vivo results showed that more mature bone was formed within PCL/BG scaffolds than PCL/HA scaffolds, manifesting that the introduction of BG accelerated cranial bone regeneration to obtain complete bone healing within a short time. Therefore, these data indicate that PCL/BG scaffolds are more competitive for bone tissue engineering application. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 654-662, 2019.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.