Abstract
Polyunsaturated fatty acids enhance the proliferation of mouse mammary epithelial cells stimulated by epidermal growth factor (EGF) by modulating the post-receptor signaling pathways. The growth stimulatory effect of these fatty acids is completely inhibited by pertussis toxin, whereas the inhibition of EGF and insulin stimulated growth is only partial. The treatment of cell cultures with 12-O-tetradecanoyl-phorbol-13 acetate (TPA) reverses the growth inhibitory effect of pertussis toxin and fully restores the growth as was in the control cultures untreated with the toxin suggesting a role for PKC in this reversal. It appears that the functions of Gi-proteins are required in the mediation of fatty acid effect on growth. The predominant types of Giα in mammary epithelial cells are Giα 1, Giα 2 and Giα 3. Among these, the levels of Giα 1 and 2 appears to be regulated by steroid hormones. Linoleic acid raises the level of GTP-bound Ras in the cells above the levels induced by EGF. Pertussis toxin reduces the level of Ras-GTP and inhibits phosphorylation of MAP kinase by EGF. It has been speculated that Gi-proteins interact with the receptor bound nucleotide exchange factor and the membrane anchored Raf kinase and constitute two sites for pertussis toxin action. The phosphorylation by PKC may uncouple Gi-protein interaction with these effectors and enable the agonist-induced signals to bypass the inhibitory action of PT on growth. It appears that the role of growth stimulatory fatty acids is to sustain a high level of Ras-GTP and amplify the signal passing through Raf-MAP kinase pathway in a Gi-protein dependent manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.