Abstract

A new system for studying growth of normal human mammary epithelial cells in an in vivo environment using athymic nude mice is described. Human mammary epithelial cells dissociated from reduction mammoplasty specimens were embedded within collagen gels and subsequently transplanted subcutaneously into nude mice. Histological sections of recovered collagen gels showed epithelial cells arranged as short tubules with some branching. Proliferation of mammary epithelial cells was quantitated in vivo by 3 days' continuous infusion with 5 bromo-2'-deoxy-uridine followed by immunostaining of sections from recovered gels. Ovarian steroids administered to the host animals, resulting in blood serum levels normally found in the human female, had little or no effect on the proliferation of human mammary epithelial cells. Collagen gel embedded mouse mammary epithelial cells, mouse mammary explants, and host mammary glands all responded similarly to ovarian steroids, suggesting that the unresponsiveness of the human mammary epithelial cells under these conditions was not due to dissociation per se. However, an increased dose of 17 beta-estradiol or a growth factor combination containing epidermal growth factor, cholera toxin, and cortisol significantly stimulated the proliferation of human outgrowths. The growth factor response was dependent on the location of the cells, with the greatest response seen in the part of the gel proximal to the osmotic pump delivering the growth factors and the effect gradually waning in area more distal to the pump. The effect was especially striking since the mitotic figures could be easily identified and the labeling index was as high as 75%. The host mouse mammary gland also responded to growth factors, resulting in ductal hyperplasia. The proliferative and morphogenetic effects of various agents on normal human mammary epithelial cells embedded in collagen gel can be studied in vivo in nude mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call