Abstract

Objective To investigate the role of growth arrest-specific protein 6 (Gas6) in the process of the migration and osteogenic differentiation of human periodontal ligament cells (hPDLCs). Methods After different concentrations of recombinant human Gas6 (rhGas6) were added to hPDLCs, cell prolife-ration experiment (CCK-8) was taken to observe the effect of rhGas6 on hPDLCs cell proliferation. Scratch test and cell migration test (Transwell) were taken to analyze the migratory ability of hPDLCs in different concentrations of rhGas6 groups. After osteogenic induction, real-time quantitative polymerase chain reaction (real-time PCR) was taken to detect the expression of the Runt-related transcription factor 2 (Runx2) and alkaline phosphatase (ALP). ALP staining was used to detect the amount of mineralized nodules. Results After adding different concentrations of rhGas6, there were no statistically significant differences in hPDLCs cell proliferation among the experimental groups and the control group at 24, 48 and 72 hours (P>0.05). After 24 h of scratch, the healing area in the 800 μg/L of the rhGas6 group was greater than that in the control group, but without statistically significant difference (31.06%±13.70% vs. 21.79%±9.51%, P>0.05). In the migration test, after 24 h, the number of hPDLCs cells which penetrated through the membrane in the 800 μg/L rhGas6 group was significantly higher than that in the control group (P 0.05). After 7 days of osteogenic induction, the mineralized nodules formed in the Gas6 knockdown group were significantly less than those in control group (0.25±0.04 vs. 1.00±0.11, P 0.05). Conclusion After downregulation of Gas6 gene, mineralized nodule formation was reduced and ALP gene expressions were decreased in the early stage of osteogenic induction (7 days). After addition of rhGas6, Runx2 and ALP gene expressions were increased and the number of cell migration was increased, suggesting that Gas6 might play a promoting role in the migration and osteogenic differentiation of human periodontal ligament cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.