Abstract
Nicotine, the main psychoactive component of tobacco, affects cell metabolism, proliferation, adhesion and, importantly, the osteogenic differentiation of fibroblasts. Approximately 15% of all orthodontic patients are adults among who one-fifth are smokers. Hence, it is necessary to have insight into the effects of nicotine on the osteogenic differentiation of hPDLCs during orthodontic tooth movement. This study aimed to investigate the effects and mechanisms of nicotine on the osteogenic differentiation of human periodontal ligament cells (hPDLCs) under the application of cyclic tensile stress. hPDLCs were obtained from donor third molars. The hPDLCs were treated with nicotine and/or cyclic tensile stress that was applied with a cell stress plus unit. The effect of nicotine on cell viability was analyzed using the MTT assay. The osteogenic differentiation of hPDLCs was detected by alkaline phosphatase staining, Alizarin Red S staining, quantitative real-time polymerase chain reaction and western blotting. In combination with cyclic tensile stress, nicotine prevented the tensile stress-induced increase in alkaline phosphatase activity, formation of mineralization nodules and the upregulation of mRNA and protein expression of Runt-related transcription factor 2, transcription factor Sp7 and collagen type I; however, canonical Wnt pathway was activated. Furthermore, the addition of Dickkopf-related protein 1 and α-bungarotoxin counteracted the negative effect of nicotine and rescued the osteogenic differentiation of hPDLCs, respectively. These results indicate that nicotine prevents the increased osteogenic potential of hPDLCs induced by cyclic tensile stress by binding to an α7 nicotinic acetylcholine receptor and activating the canonical Wnt pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.