Abstract

Lactate, a metabolite of exercise, plays a crucial role in the body. In these studies, we aimed to investigate the role of G protein-coupled receptor 81 (GPR81), a specific receptor for lactate, in regulating lipid storage in the gastrocnemius muscle of rats. To achieve this, we measured the impact of sodium 3-hydroxybutyrate (3-OBA) concentration and time on the cAMP-PKA signaling pathway in the gastrocnemius muscles ofrats. Our investigation involved determining the effects of administering 3-OBA at a concentration of 3 mmol L-1 just 15 min before exercise. As expected, exercise led to a notable increase in intramuscular lactate concentration in rats. However, injecting 3-OBA prior to exercise yielded intriguing results. It not only further augmented the cAMP-PKA signaling pathway but also boosted the expression of lipolysis-related proteins such as hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL). Simultaneously, it decreased the expression of fat-synthesizing proteins, including acetyl CoA carboxylase (ACC) and fatty acid synthase (FAS), while increasing the protein expression of cytochrome c oxidase subunit Ⅳ(COX Ⅳ) and the activity of citrate synthetase (CS). Unfortunately, there was no significant change observed in intramuscular triglyceride (IMTG) content. In summary, our findings shed light on the role of lactate in partially regulating intramuscular triglycerides during exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.