Abstract

The impact of goethite on air-oxidation of PAH-contaminated soils was studied through two sets of experiments. (i) Soil extractable organic matter (EOM) and (ii) whole coking plant soils were oxidized at 60 and 100°C for 160d, with/without goethite. Organic matter (OM) mineralization was monitored via CO2 production and polycyclic aromatic compounds (PACs) oxidation was investigated by GC–MS analyses. The decrease in EOM and PAH contents, and the oxygenated-PAC production observed during EOM oxidation, were enhanced by the presence of goethite. PACs were likely transformed at the goethite surface through electron transfer process. Mass carbon balance revealed a transfer from EOM to the insoluble organic fraction indicating condensation/polymerization of organics. Soil oxidation induced a decrease in EOM, PAH but also in oxygenated-PAC contents, underscoring different oxidation or polymerization behavior in soil. The goethite addition had a lesser impact suggesting that indigenous minerals played an important role in PAC oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.