Abstract

The role of glycolytically generated ATP in Ca(2+)/calmodulin-dependent kinase II (CaMKII)-mediated regulation of intracellular Ca(2+) signaling was examined in cultured calf pulmonary artery endothelial (CPAE) cells. Exposure of cells (extracellular Ca(2+) concentration = 2 mM) to glycolytic inhibitors 2-deoxy-D-glucose (2-DG), pyruvate (pyr) + beta-hydroxybutyrate (beta-HB), or iodoacetic acid (IAA) caused an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)). CaMKII inhibitors (KN-93, W-7) triggered a similar increase of [Ca(2+)](i). The rise of [Ca(2+)](i) was characterized by a transient spike followed by a small sustained plateau of elevated [Ca(2+)](i). In the absence of extracellular Ca(2+) 2-DG caused an increase in [Ca(2+)](i), suggesting that inhibition of glycolysis directly triggered release of Ca(2+) from intracellular endoplasmic reticulum (ER) Ca(2+) stores. The inositol-1,4,5-trisphosphate receptor (IP(3)R) inhibitor 2-aminoethoxydiphenyl borate abolished the KN-93- and 2-DG-induced Ca(2+) response. Ca(2+) release was initiated in peripheral cytoplasmic processes from which activation propagated as a [Ca(2+)](i) wave toward the central region of the cell. Focal application of 2-DG resulted in spatially confined elevations of [Ca(2+)](i). Propagating [Ca(2+)](i) waves were preceded by [Ca(2+)](i) oscillations and small, highly localized elevations of [Ca(2+)](i) (Ca(2+) puffs). Inhibition of glycolysis with 2-DG reduced the KN-93-induced Ca(2+) response, and vice versa during inhibition of CaMKII 2-DG-induced Ca(2+) release was attenuated. Similar results were obtained with pyr + beta-HB and W-7. Furthermore, 2-DG and IAA caused a rapid increase of intracellular Mg(2+) concentration, indicating a concomitant drop of cellular ATP levels. In conclusion, CaMKII exerts a profound inhibition of ER Ca(2+) release in CPAE cells, which is mediated by glycolytically generated ATP, possibly through ATP-dependent phosphorylation of the IP(3)R.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call