Abstract

Cancer cachexia, the unintentional loss of lean mass, contributes to functional dependency, poor treatment outcomes, and decreased survival. While its pathogenicity is multifactorial, metabolic dysfunction remains a hallmark of cachexia. However, significant knowledge gaps exist in understanding the role of skeletal muscle lipid metabolism and dynamics in this condition. We examined skeletal muscle metabolic dysfunction, intramyocellular LD content, LD morphology and subcellular distribution, and LD-mitochondrial interactions using the Lewis Lung Carcinoma (LLC) murine model of cachexia. C57/BL6 male mice (n=20) were implanted with LLC cells [106] in the right flank or underwent PBS sham injections. Skeletal muscle was excised for transmission electron microscopy (TEM; soleus), oil red o/lipid staining (tibialis anterior), and protein (gastrocnemius). LLC mice had a greater number (232%; p=0.006) and size (130%; p=0.023) of intramyocellular LDs further supported by increased oil-red O positive (87%; p=0.0109) and 'very high' oil-red O positive (178%; p=0.0002) fibers compared to controls and this was inversely correlated with fiber size (R2=0.5294; p<0.0001). Morphological analyses of LDs show increased elongation and complexity (aspect ratio: IMF: 9%, p=0.046) with decreases in circularity (circularity: SS: 6%, p=0.042) or roundness (roundness: Whole: 10%, p=0.033; IMF: 8%, p=0.038) as well as decreased LD-mitochondria touch (-15%; p=0.006), contact length (-38%; p=0.036), and relative contact (86%; p=0.004). Further, dysregulation in lipid metabolism (adiponectin, CPT-1b) and LD-associated proteins, perilipin-2 and perilipin-5, in cachectic muscle (p<0.05) were observed. Collectively, we provide evidence that skeletal muscle myosteatosis, altered LD morphology, and decreased LD-mitochondrial interactions occur in a preclinical model of cancer cachexia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call