Abstract
The growth of Escherichia coli mutants deficient in glutathione synthesis (gshA) and in glutathione reductase (gor) was suppressed in medium of elevated osmolarity. A mutant in gamma-glutamyl transpeptidase (ggt) displayed better ability for osmoadaptation than the parental strain. The unfavorable effect of the gsh mutation on osmoadaptation of growing E. coli cells was more pronounced at low concentrations of K+ in the medium. An increase in osmolarity caused an increase in the intracellular content of glutathione. Changes in the extracellular glutathione level were biphasic: the glutathione level rapidly decreased during the first stage of the response and increased during the second stage. The changes in glutathione levels suggest that under hyperosmotic shock the glutathione transport from the medium into the cell can contribute to the intracellular glutathione accumulation. Changes in the level of intracellular K+ were similarly biphasic: a rapid increase in the K+ level during the first stage of the response to hyperosmotic shock changed to a gradual decrease during the second stage. In mutant gshA cells adapted to osmotic shock, the intracellular K+ level was markedly higher than in the parental strain cells. The possible role of glutathione in the response of E. coli to osmotic shock is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.