Abstract

Glucocorticoids, including dexamethasone (DEX) and prednisone (PRED), have been prescribed in patients with neoplastic disease as cytotoxic agents or comedications. Nonetheless, it remains uncertain whether they have an impact on the development of bladder cancer. We, therefore, assessed the functional role of theglucocorticoid-mediated glucocorticoid receptor (GR) signaling in urothelial tumorigenesis. Tumor formation was significantly delayed in xenograft-bearing mice with implantation of control bladder cancer UMUC3 cells or nonneoplastic urothelial SVHUC cells undergoing malignant transformation induced by a chemical carcinogen 3-methylcholanthrene (MCA), compared with respective GR knockdown xenografts. Using the in vitro system with MCA-SVHUC cells, we screened 11 GR ligands, including DEX, and found significant inhibitory effects of PRED on their neoplastic transformation. The effects of PRED were restored by a GR antagonist RU486 in GR-positive MCA-SVHUC cells, while PRED failed to inhibit theneoplastic transformation of GR knockdown cells. Significant decreases in the expression levels of oncogenes (c-Fos/c-Jun) and significant increases in those of a tumor suppressor UGT1A were seen in MCA-SVHUC-control cells (vs GR-short hairpin RNA) or PRED-treated MCA-SVHUC-control cells (vs mock). In addition, N-butyl-N-(4-hydroxybutyl) nitrosamine induced bladder cancer in all of eight mock-treated mice vs seven (87.5%) of DEX-treated (P = .302) or four (50%) of PRED-treated (P = .021) animals. Finally, DEX was found to considerably induce both transactivation (activation of glucocorticoid-response element mediated transcription and expression of its targets) and transrepression (suppression of nuclear factor-kappa B transactivation and expression of its regulated genes) of GR in SVHUC cells, while PRED more selectively induced GR transrepression. These findings suggest that PRED could prevent urothelial tumorigenesis presumably via inducing GR transrepression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.