Abstract

Extrinsic atoms were doped into multiwalled carbon nanotubes (MWCNTs) using microwave plasma-enhanced chemical vapor deposition. Doped nitrogen atoms alter the original parallel graphenes into highly curved ones including some fullerene-like structures. Doped nitrogen atoms could replace carbon atoms in MWCNTs and therefore increase the electronic density that enhances the electron field emission properties. On the other hand, the incorporation of boron into the carbon network apparently increases the concentration of electron holes that become electron traps and eventually impedes the electron field emission properties. Fowler–Nordheim plots show two different slopes in the curve, indicating that the mechanism of field emission is changed from low to high bias voltages. β values could be increased by an amount of 42% under low bias voltages and 60% under high bias voltages in the N-doped MWCNTs, but decreased by an amount of 8% under low bias region and 68% under high bias voltage in the B-doped MWCNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.