Abstract

An extended layer of defected SiC has been observed in SiC subjected to heat treatments at 850 and 1050 °C prior to growth of graphene by thermal decomposition. This layer is found to strongly affect the graphene thickness, surface morphology, and Raman spectrum of graphene grown on it. By comparing the strength of the XPS signal associated with this layer it was found that the samples with stronger defected layer signal had the least number of surface pits but also showed the increase in Raman D to G band ratio. The shifts in 2D and G peaks are associated with varying amounts of strain and unintentional doping induced by the SiC defected interface layer, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.