Abstract
Textural and energetic proprieties of kaolinite were studied by low-pressure argon adsorption at 77 K. The heterogeneity of four kaolinites (two low-defect and two high-defect samples) modified on their surface by cation exchange with Li+, Na+, or K+ was studied by DIS analysis of the derivative argon adsorption isotherms. The comparison between the derivative adsorption isotherms shows that the nature of the surface cation influences the adsorption phenomena on edge and basal faces. In the case of basal faces, two adsorption domains are observed: for the first one, argon adsorption is slightly sensitive to the nature of the surface cation; for the second one, argon adsorption energy depends on the nature of surface cation suggesting their presence on theoretically uncharged basal faces. This study also shows that the shape of elementary particles, as derived from basal and edge surface areas, changes with the nature of cation. This anomalous result is due to the decrease of edge surface area with increasing the size of the cation. This surface cation dependence can be accounted for the area occupied by the edge surface cations in the first argon monolayer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.