Abstract

Electrocatalysis is a promising approach to convert waste nitrate to ammonia and help close the nitrogen cycle. This renewably powered ammonia production process sources hydrogen from water (as opposed to methane in the thermal Haber-Bosch process) but requires a delicate balance between a catalyst's activity for the hydrogen evolution reaction (HER) and the nitrate reduction reaction (NO3RR), influencing the Faradaic efficiency (FE) and selectivity to ammonia/ammonium over other nitrogen-containing products. We measure ammonium FEs ranging from 3.6 ± 6.6% (on Ag) to 93.7 ± 0.9% (on Co) across a range of transition metals (TMs; Ti, Fe, Co, Ni, Ni0.68Cu0.32, Cu, and Ag) in buffered neutral media. To better understand these competing reaction kinetics, we develop a microkinetic model that captures the voltage-dependent nitrate rate order and illustrates its origin as competitive adsorption between nitrate and hydrogen adatoms (H*). NO3RR FE can be described via competition for electrons with the HER, decreasing sharply for TMs with a high work function and a correspondingly high HER activity (e.g., Ni). Ammonium selectivity nominally increases as the TM d-band center energy (Ed) approaches and overcomes the Fermi level (EF), but is exceptionally high for Co compared to materials with similar Ed. Density functional theory (DFT) calculations indicate Co maximizes ammonium selectivity via (1) strong nitrite binding enabling subsequent reduction and (2) promotion of nitric oxide dissociation, leading to selective reduction of the nitrogen adatom (N*) to ammonium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.