Abstract
Using first-principles density functional theory (DFT), we separate the distortion energy (DE) on Fe due to the introduction of solute atoms like B, C, N, and O at different sites from the electronic binding energy (EBE) of a solute atom with Fe. Contrary to the belief that distortion energy alone dictates the preference of solute atoms for a site in bulk, we show that EBE dictates the preference of the O for the octahedral site in Fe, with DE being the highest at the site. The site preference for C and N in bulk Fe is dictated by both DE and EBE. However, DE alone dictates site preference for B. The DE of solute atoms cannot be predicted by calculated radius, which is highest for B and lowest for O. We find that O and B have similar distortion energy due to large charge transfer to the O atom from Fe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.