Abstract

The chiral phase transition at finite temperature is studied by using the Schwinger-Dyson equation in the dual Ginzburg-Landau theory, in which the dual Higgs mechanism plays an essential role on both the color confinement and the spontaneous chiral-symmetry breaking. At zero temperature, the quark condensate is strongly correlated with the string tension, which is generated by QCD-monopole condensation, as 〈 qq〉 1 3 ▪ σ . In order to solve the finite-temperature Schwinger-Dyson equation numerically, we provide a new ansatz for the quark self-energy in the imaginary-time formalism. The recovery of the chiral symmetry is found at high temperature; T C ∼ 100 MeV with realistic parameters. We find also a strong correlation between the critical temperature T C of the chiral symmetry restoration and the strength of the string tension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.