Abstract

We study nonperturbative features of QCD using the dual Ginzburg-Landau (DGL) theory, where the color confinement is realized through the dual Higgs mechanism brought by QCD-monopole condensation. The linear confinement potential appears in the QCD-monopole condensed vacuum. We study the infrared screening effect to the confinement potential by the light-quark pair creation, and derive a compact formula for the screened quark potential. We study the dynamical chiral-symmetry breaking (DχSB) in the DGL theory by solving the Schwinger-Dyson equation. QCD-monopole condensation plays an essential role to DχSB. The QCD phase transition at finite temperature is studied using the effective potential formalism in the DGL theory. We find the reduction of QCD-monopole condensation and the string tension at high temperatures. The surface tension is calculated using the effective potential at the critical temperature Tc. The DGL theory predicts a large mass reduction of glueballs near Tc. We apply the DGL theory to the quark-gluon-plasma (QGP) physics in the ultrarelativistic heavy-ion collisions. We propose a new scenario of the QGP formation via the annihilation of color-electric flux tubes based on the attractive force between them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.