Abstract

A large fraction of the animal genome is maintained in a transcriptionally repressed state throughout development. By generating viable Dnmt1(-)(/)(-) mouse cells we have been able to study the effect of DNA methylation on both gene expression and chromatin structure. Our results confirm that the underlying methylation pattern has a profound effect on histone acetylation and is the major effector of me-H3(K4) in the animal genome. We demonstrate that many methylated genes are subject to additional repression mechanisms that also impact on histone acetylation, and the data suggest that late replication timing may play an important role in this process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.