Abstract

We study the effects of disorder on the quantum Hall stripe phases in half-filled high Landau levels using exact numerical diagonalization. We show that, in the presence of weak disorder, a compressible, striped charge density wave, becomes the true ground state. The projected electron density profile resembles that of a smectic liquid. With increasing disorder strength W, we find that there exists a critical value, W_c \sim 0.12 e^2/\epsilon l, where a transition/crossover to an isotropic phase with strong local electron density fluctuations takes place. The many-body density of states are qualitatively distinguishable in these two phases and help elucidate the nature of the transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.