Abstract

It has been reported that the basic electrical properties of n-type long wave length infrared (LWIR) HgCdTe grown on silicon, including the majority carrier mobility (μ e) and minority carrier lifetime (τ), are qualitatively comparable to those reported for LWIR HgCdTe grown on bulk CdZnTe by molecular beam epitaxy (MBE). Detailed measurements of the majority carrier mobility have revealed important differences between the values measured for HgCdTe grown on bulk CdZnTe and those measured for HgCdTe grown on buffered silicon substrates. The mobility of LWIR HgCdTe grown on buffered silicon by MBE is reported over a large temperature range and is analyzed in terms of standard electron scattering mechanisms. The role of dislocation scattering is addressed for high dislocation density HgCdTe grown on lattice-mismatched silicon. Differences between the low temperature mobility data of HgCdTe grown on bulk CdZnTe and HgCdTe grown on silicon are partially explained in terms of the dislocation scattering contribution to the total mobility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.