Abstract

In the moments immediately following a nuclear detonation, casualties with a variety of injuries including trauma, burns, radiation exposure, and combined injuries would require immediate assistance. Accurate and timely radiation dose assessments, based on patient history and laboratory testing, are absolutely critical to support adequately the triage and treatment of those affected. This capability is also essential for ensuring the proper allocation of scarce resources and will support longitudinal evaluation of radiation-exposed individuals and populations. To maximize saving lives, casualties must be systematically triaged to determine what medical interventions are needed, the nature of those interventions, and who requires intervention immediately. In the National Strategy for Improving the Response and Recovery for an Improvised Nuclear Device (IND) Attack, the U.S. Department of Homeland Security recognized laboratory capacity for radiation biodosimetry as having a significant gap for performing mass radiation dose assessment. The anticipated demand for radiation biodosimetry exceeds its supply, and this gap is partly linked to the limited number and analytical complexity of laboratory methods for determining radiation doses within patients. The dicentric assay is a key component of a cytogenetic biodosimetry response asset, as it has the necessary sensitivity and specificity for assessing medically significant radiation doses. To address these shortfalls, the authors have developed a multimodal strategy to expand dicentric assay capacity. This strategy includes the development of an internet-based cytogenetics network that would address immediately the labor intensive burden of the dicentric chromosome assay by increasing the number of skilled personnel to conduct the analysis. An additional option that will require more time includes improving surge capabilities by combining resources available within the country's 150 clinical cytogenetics laboratories. Key to this intermediate term effort is the fact that geneticists and technicians may be experts in matters related to identifying chromosomal abnormalities related to genetic disorders, but they are not familiar with dosimetry for which training and retraining will be required. Finally, long-term options are presented to improve capacity focus on ways to automate parts of the dicentric chromosome assay method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.